9,050 research outputs found

    A 0.8 V T Network-Based 2.6 GHz Downconverter RFIC

    Get PDF
    A 2.6 GHz downconverter RFIC is designed and implemented using a 0.18 μm CMOS standard process. An important goal of the design is to achieve the high linearity that is required in WiMAX systems with a low supply voltage. A passive T phase-shift network is used as an RF input stage in a Gilbert cell to reduce supply voltage. A single supply voltage of 0.8 V is used with a power consumption of 5.87 mW. The T network-based downconverter achieves a conversion gain (CG) of 5 dB, a single-sideband noise figure (NF) of 16.16 dB, an RF-to-IF isolation of greater than 20 dB, and an input-referred third-order intercept point (IIP3) of 1 dBm when the LO power of -13 dBm is applied

    Topological twisted sigma model with H-flux revisited

    Full text link
    In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model.Comment: 16 pages. Appendix adde

    Selective interlayer ferromagnetic coupling between the Cu spins in YBa2_2 Cu3_3 O7x_{7-x} grown on top of La0.7_{0.7} Ca0.3_{0.3} MnO3_3

    Full text link
    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2_2 Cu3_3 O7x_{7-x} (YBCO) superconductor when it is grown on top of ferromagnetic La0.7_{0.7} Ca0.3_{0.3} MnO3_3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La0.7_{0.7} Ca0.3_{0.3} interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2_2 plane at the La0.7_{0.7} Ca0.3_{0.3} and MnO2_2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different from the published versio

    Ferromagnetic Enhancement of CE-type Spin Ordering in (Pr,Ca)MnO3_3

    Full text link
    We present resonant soft X-ray scattering (RSXS) results from small band width manganites (Pr,Ca)MnO3_3, which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperature and enhanced by ferromagnetism in the macroscopically insulating state (FM-I). Our results reveal the fragility of the CE-type ordering that underpins the colossal magnetoresistance (CMR) effect in this system, as well as an unexpected cooperative interplay between FM-I and CE-type SO which is in contrast to the competitive interplay between the ferromagnetic metallic (FM-M) state and CE-type ordering.Comment: Accepted for publication in Phys. Rev. Let

    Ethyl cyanide on Titan: Spectroscopic detection and mapping using ALMA

    Get PDF
    We report the first spectroscopic detection of ethyl cyanide (C2_2H5_5CN) in Titan's atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter array (ALMA). The presence of C2_2H5_5CN in Titan's ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C2_2H5_5CNH+^+. Here we report the detection of 27 rotational lines from C2_2H5_5CN (in 19 separate emission features detected at >3σ>3\sigma confidence), in the frequency range 222-241 GHz. Simultaneous detections of multiple emission lines from HC3_3N, CH3_3CN and CH3_3CCH were also obtained. In contrast to HC3_3N, CH3_3CN and CH3_3CCH, which peak in Titan's northern (spring) hemisphere, the emission from C2_2H5_5CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C2_2H5_5CN. Radiative transfer models show that most of the C2_2H5_5CN is concentrated at altitudes 300-600 km, suggesting production predominantly in the mesosphere and above. Vertical column densities are found to be in the range (2-5)×1014\times10^{14} cm2^{-2}.Comment: Published in 2015, ApJL, 800, L1
    corecore